Business Intelligence (1) - Data Warehouses
NFE211


Objectifs pédagogiques

Acquérir une bonne connaissance de l'informatique décisionnelle  (Business Intelligence), et en particulier de tous les processus liés à une architecture d'entrepôt de données (Data Warehouse).

Cette UE cible tout particulièrement la conception de l'entrepôt de données, la gestion du projet, et sa mise en œuvre, en particulier la mise en œuvre de la partie ETL.

Remarque : Pour une maitrise complète du processus, tant du point de vue gestion des données que du point de vue analyse des données (data Science) il est conseiller de suivre également le NFE212 (semestre 2) qui fait suite au NFE211 (semestre 1)

Public et conditions d'accès

Ce cours s'adresse aux auditeurs préparant le diplôme d'ingénieur informatique option système d'information et/ou aux étudiants suivant le Master STIC mention Informatique Spécialité Systèmes d'Information et de Décision
Prérequis : Bonnes connaissances en bases de données et en systèmes d'information.

Compétences

Capacité d'intégration dans une équipe de développement de système d'information décisionnel. En particulier compétences en conception et exploitation d'entrepôts de données :

  • Capacité à concevoir et implémenter la partie ETL d'un Data Warehouse
  • Capacité à concevoir et implémenter des cubes décisionnels
  • Capacité à concevoir dans sa totalité une chaîne décisionnelle
  • Capacité à mettre en œuvre une chaîne décisionnelle à l'aide des outils du marché
  • Capacité à exploiter une chaîne décisionnelle
  • Capacité à gérer l'intégration des données
  • Capacité à gérer un projet décisionnel
Méthodes de validation

L'UE sera validée par un examen final et par un projet réalisé individuellement, en binôme ou en trinôme.

Le projet - dont le sujet sera choisi par l'élève en accord avec le professeur - permettra de mettre en place une chaîne décisionnelle fondée sur les outils du marché (parmi l'offre industrielle ou celle du logiciel libre).    Le projet peut aussi permettre d'approfondir un point théorique (par exemple la prise en compte du RGPD dans le Data Warehouse).

La note finale sera la moyenne de l'examen et du projet (avec la contrainte note examen >= 10).

Contenu de la formation

Introduction

  • La Business Intelligence
  • Business Intelligence et Big Data
  • Objectifs d'un entrepôt de données
  • OLAP versus OLTP

Architecture d'un entrepôt de données

  • Architecture matérialisée /architecture médiateur
  • Dualité Entrepôt / magasins, Architecture de Inmon, Architecture de Kimball
  • Data Warehouse /Data Lake
  • Self BI
  • Les méta-données, gestion, standardisation CWMI

Modélisation multidimensionnelle

  • La modélisation multidimensionnelle, faits, dimensions, hiérarchies, indicateurs
  • Modèles OLAP, ROLAP, MOLAP, mixte
  • Modélisation en étoile, en flocon, en constellation
  • L'algèbre multidimensionnelle
  • Les dimensions à changement lent
  • Les différents types de table de faits (récapitulatifs, transactions)

Méthodes de modélisation d'un entrepôt de données

  • Méthode par matrice
  • Méthode par indicateurs
  • Méthode MAP
  • Méthode par analyse des requêtes
  • Volumétrie, choix de la granularité, choix des Data Marts
  • Méthodes de projets BI


Ingénierie d'extraction et d'intégration des données

  • L'extraction des données
  • Le nettoyage des données
  • L'intégration sémantique des données
  • Le rafraichissement des données
  • Solution par programmation (Embedded SQL, déclencheurs)
  • Solution par outils ETL

L'environnement technologique

  • Outils ETL, Systèmes de gestion de bases de données OLAP, outils de modélisation multidimensionnelle
  • Data Warehouse et Cloud,
  • Data Warehouse et Big Data
Bibliographie
  • M. Jarke , M. Lenzerini, Y. Vassiliou, P. Vassiliadis: Fundamentals of datawarehouses (2d édition, Springer, 2003).
  • E. Métais: Systèmes d'aide à la décision et entrepôts de données (Encyclopedia Universalis) http://www.universalis.fr/encyclopedie/systemes-informatiques-systemes-d-aide-a-la-decision/
  • W.H. Inmon: Building the Datawarehouse
  • Kimball R, Ross M.: Entrepôts de données, guide pratique de modélisation multidimensionnelle, Vuibert 2003

Cette UE apparaît dans les diplômes et certificats suivants :

Prochaines sessions de formation

Filtres :
Centre de formation Semestre
2021/2022
Jours de
formation
Modalité Tarif    
Paris Semestre 1 180 € Inscription fermée

Date de début des cours (*) : 20/09/2021

* Les dates fournies sont d'ordre général à toutes les formations.
Les cours pour cette formation peuvent potentiellement commencer un peu plus tard dans le semestre.

Paris
Semestre 1
Cours en ligne
180 €
Légende :
Tarif :

Seul le financement à titre individuel est proposé à l'inscription en ligne. Si vous souhaitez financer votre formation par votre entreprise, vous devez demander un devis auprès de nos centres Tarifs en vigueur depuis le 17 juin 2020.

Date de début de cours :

Les dates fournies sont d'ordre général à toutes les formations. Les cours pour cette formation peuvent potentiellement commencer un peu plus tard dans le semestre.

Annuel :

Il s'étend de fin septembre / début octobre à début juillet (dates indicatives, renseignez-vous auprès de votre centre).

Semestre 1 :

Il s'étend de fin septembre / début octobre à fin janvier / début février (dates indicatives, renseignez-vous auprès de votre centre).

Semestre 2 :

Il s'étend de fin février / début mars à début juillet (dates indicatives, renseignez-vous auprès de votre centre).

Cours du soir :

Les cours commencent le plus souvent à 18h30 dans les centres.

  Cours en journée :

Se renseigner auprès du centre pour connaître les horaires.

Cours en ligne :

Les cours sont diffusés sous forme de séances numériques via une plateforme d'e-learning animées et tutorées par un enseignant. Des regroupements peuvent être proposés dont certains sont obligatoires.

  Cours hybrides :

Cette modalité mixe des cours en présentiel (en cours du soir ou en journée) et des cours en ligne.

  Cours en ligne organisés par un autre
centre CNAM Régional :

Les cours sont diffusés sous forme de séances numériques via une plateforme d'e-learning animées et tutorées par un enseignant.

Recherche en cours ...