Données multimédia et spatio-temporelles
NFE205


Objectifs pédagogiques :

La gestion et l'exploitation des données multimédia et spatio-temporelles ont une grande importance dans des domaines aussi variés que l'audiovisuel, l'exploitation de données scientifiques, l'imagerie médicale, le tourisme, la planification urbaine, l'étude du climat, le marketing ou la sécurité.
Les données multimédia et spatio-temporelles sont souvent peu structurées et très volumineuses, la technologie relationnelle est insuffisante ou inadaptée pour leur gestion. De plus, des opérations de recherche de nature différente sont nécessaires afin d'accéder à l'information présente par ex. dans des contenus visuels (BD multimédia) ou vectoriels (BD spatiales).
L'objectif de cet enseignement est de faire comprendre les principes et les technologies actuelles de gestion et de recherche dans des données multimédia et spatio-temporelles. Les travaux pratiques doivent permettre une familiarisation avec une partie des techniques abordées dans le cours.

Public et conditions d'accès :

Prérequis : M1 ou bac + 4 et NFE204 ou équivalent
Public : cycle d'ingénieur CNAM, Master M2

Compétences :

Maîtrise des enjeux et défis pour les nouveaux marchés liés à la gestion de gros volumes de données non traditionnelles (notamment grandes bases de données multimédia : image, vidéo, son, capteurs), pour lesquels la technologie relationnelle est insuffisante.

Méthodes de validation :

Examen terminal et projet.

Contenu de la formation :

Thèmes abordés dans le cours et les travaux pratiques (TP) :

  • Spécificités des bases de données multimédia et des bases spatio-temporelles, domaines d'application.
  • Données image, audio et vidéo : description, traitement, stockage, structuration et outils disponibles
  • Données spécifiques : données médicales, satellite, aériennes, séries temporelles, anthropométriques (empreintes, iris, etc.), graphe
  • Bases de données spatiales et spatio-temporelles : modèle de données, structures d'index, produits du marché, applications.
  • Paradigmes et méthodes spécifiques de recherche d'information multimédia : recherche par le contenu, recherche multi-modale, méthodes par apprentissage
  • Passage à l'échelle de la recherche par similarité
  • Introduction à l'intelligence artificielle pour des données multimédia

Les TP permettent d'élargir, détailler et de mettre en œuvre certaines techniques vues en cours.

Bibliographie :
  • Akka Zemari, Jenny Benois-Pineau: Deep Learning in Mining of Visual Content, 2020
  • John W. Woods: Multidimensional Signal, Image, and Video Processing and Coding, 2011
  • Chloé-Agathe Azencott: Introduction au Machine Learning, 2019
  • Paul A. Longley et al.: Geographic Information Systems and Science, 2010

Cette UE apparaît dans les diplômes et certificats suivants :

Prochaines sessions de formation

Filtres :
Centre de formation Semestre
2022/2023
Jours de
formation
Modalité Tarif    
Paris Semestre 1 180 € Ouverture des inscriptions
le 01/09/2022

Date de début des cours (*) :

  • 19/09/2022

* Les dates fournies sont d'ordre général à toutes les formations.
  Les cours pour cette formation peuvent potentiellement commencer un peu plus tard dans le semestre.

Ajouter au panier
Contacter le centre
Légende :
Date de début de cours :
  • Île-de-France :
    • 1er semestre et annuel : 26/09/2022
    • 2e semestre : 01/03/2023
  • Paris :
    • 1er semestre et annuel : 19/09/2022
    • 2e semestre : 06/02/2023

Les dates fournies sont d'ordre général à toutes les formations. Les cours pour cette formation peuvent potentiellement commencer un peu plus tard dans le semestre.

Tarif :

Seul le financement à titre individuel est proposé à l'inscription en ligne. Si vous souhaitez financer votre formation par votre entreprise, vous devez demander un devis auprès de nos centres Tarifs en vigueur depuis le 17 juin 2020.

Annuel :

Il s'étend de fin septembre / début octobre à début juillet (dates indicatives, renseignez-vous auprès de votre centre).

Semestre 1 :

Il s'étend de fin septembre / début octobre à fin janvier / début février (dates indicatives, renseignez-vous auprès de votre centre).

Semestre 2 :

Il s'étend de fin février / début mars à début juillet (dates indicatives, renseignez-vous auprès de votre centre).

Cours du soir :

Les cours commencent le plus souvent à 18h30 dans les centres.

  Cours en journée :

Se renseigner auprès du centre pour connaître les horaires.

Cours en ligne :

Les cours sont diffusés sous forme de séances numériques via une plateforme d'e-learning animées et tutorées par un enseignant. Des regroupements peuvent être proposés dont certains sont obligatoires.

  Classe virtuelle :

L'enseignant à distance intervient en direct et en visioconférence sur la plateforme d'e-learning. Il complète son intervention par des activités interactives (exercices échanges…)

  Cours en ligne hybride :

Cette modalité propose une majorité de cours en ligne tuteurés et des regroupements en présentiel obligatoires.

  Cours hybrides :

Cette modalité mixe des cours en présentiel (en cours du soir ou en journée) et des cours en ligne.

  Cours en ligne organisés par un autre
centre CNAM Régional :

Les cours sont diffusés sous forme de séances numériques via une plateforme d'e-learning animées et tutorées par un enseignant.

Recherche en cours