Mécanique des milieux continus
MEC122


Objectifs pédagogiques :
  • Approfondir les notions de base de l'élasticité linéarisée introduites lors de l'UE UTC402 Introduction à la mécanique des solides déformables
  • Introduire le modèle simplifié poutre à partir de l'élasticité tridimensionnelle
  • Présenter des méthodes de résolution basées sur une approche énergétique. Application à des structures hyperstatiques.

 

Public et conditions d'accès :

Avoir un diplôme Bac +2 de spécialité mécanique et avoir suivi le cours d'introduction à la mécanique des solides déformables (UTC402).

Il est recommandé d'avoir de bonnes notions d'algèbre linéaire.

Contenu de la formation :
  1. Rappel d'élasticité classique
    • Cinématique des milieux continus. Déformations linéarisées
    • Représentation des efforts intérieurs. Notion de contrainte
    • Loi de comportement élastique.
  2. Ecriture et résolution d'un problème d'élasticité
    • Approche en déplacement (méthode de Navier)
    • Approche en contrainte (méthode de Beltrami)
    • Cas particulier des formulations en contraintes planes et en déformations planes
  3. Modélisation des structures élancées : le modèle poutre
    • Solutions quasi-exactes de Saint-Venant. Principe de Saint Venant
    • Hypothèses du modèle poutre
    • Contraintes généralisées. Torseur de cohésion
    • Déplacements généralisés. Torseur des petits déplacements de la section droite
    • Loi de comportement poutre
    • Ecriture et résolution du problème poutre
    • Retour aux grandeurs de l'élasticité 3D et dimensionnement
  4. Approches énergétiques pour le calcul de structures
    • Théorème de l'énergie potentielle. Application aux treillis de barres.
    • Théorème de l'énergie complémentaire. Application aux structures hyperstatiques

 

Bibliographie :
  • P. GERMAIN, P. MULLER: Introduction à la mécanique des milieux continus (Masson, Paris, 1994).
  • J. SALENÇON: Mécanique des milieux continus, Tomes 1 et 2 (Ellipses, Paris, 1988).
  • J. OBALA: Exercices et problèmes de mécanique des milieux continus (Masson Paris 1981).

Cette UE apparaît dans les diplômes et certificats suivants :

Prochaines sessions de formation

Recherche en cours