Le cours présente des méthodes pour décrire, expliquer ou prédire une variables à l'aide d'un ou plusieurs caractères quantitatifs et/ou qualitatifs. Ces méthodes, fondées sur le modèle linéaire, sont illustrées par des sorties SAS.
Bases d'inférence statistique : variables aléatoire, statistiques et distributions d'échantillonnage, estimation ponctuelle et par intervalle, tests d'hypothèses. Notions de calcul matriciel.
Les UE STA104 et STA101 donnent toutes les connaissances nécessaires pour intégrer le cours.
Connaitre les bases théoriques des modèles présentés en cours, et en particulier :
- Les hypothèses des modèles
- Les méthodes de construction des estimateurs des paramètres
- Les propriétés des estimateurs
Etre capable d'interpréter les sorties d'un logiciel à fin de :
- Evaluer l'ajustement aux données et la signification statistique du modèle
- Détecter des données aberrantes et influentes
- Vérifier les hypothèses du modèle.
- Détecter des problèmes de multi colinéarité
- Choisir le meilleur modèle par la sélection des variables
Examen écrit
Régression linéaire simple :
Régression linéaire multiple :
Analyse de la variance - modèle à un facteur :
Analyse de la variance - modèle à deux facteurs :
Analyse de la covariance :
Cette UE apparaît dans les diplômes et certificats suivants :