Permettre aux ingénieurs, cadres d'entreprises ou d'administrations, médecins, chercheurs, de construire des modèles explicatifs de variables qualitatives. Le cours s'appuie sur la pratique du logiciel SAS, mis à disposition des auditeurs.
Ce cours s'adresse en priorité aux auditeurs préparant le master MR0085.
Il s'adresse également à des auditeurs préparant le diplôme d'actuaire.
Niveau requis: STA102 (régression et analyse de la variance) et STA104 (statistique mathématique).
Rédaction d'un mémoire utilisant les méthodes présentées en cours
Présentation des méthodes statistiques traitant des variables qualitatives
Principes généraux d'estimation d'un modèle (maximum de vraisemblance)
La régression logistique simple
Notion de variable latente
Les modèles PROBIT, LOGIT
Le modèle logistique et son interprétation
Analyse des résidus, des observations
La régression logistique multiple
Le modèle : prédicteurs quantitatifs ou qualitatifs
Sélection de variables
Résumé des tests de validité générale d'un modèle
Tables de classement, courbe ROC
Interprétation des coefficients de la régression logistique : odds ratio
La régression logistique dans le cas où Y est une variable polytomique ordonnée
Aspects pratiques de la mise en oeuvre des méthodes de régression logistique
La procédure LOGISTIC
Présentation des modèles linéaires généralisés et de la procédure GENMOD
Régression de Poisson
Etude de contrastes
Modélisation d'une réponse multinomiale
Estimation par maximum de vraisemblance ou par moindres carrés généralisés
Etude de cas avec la procédure CATMOD
Comparaison de la régression logistique avec d'autres méthodes de modélisation d'une réponse qualitative
Analyse discriminante sur variables quantitatives et qualitatives
Arbres de décision
Eléments pratiques de création d'un score
Méthodes PLS
Présentation de NIPALS, PLS1,PLS2
Applications: régression logistique PLS, analyse discriminante PLS
Modèles linéaires généralisés PLS
Cette UE apparaît dans les diplômes et certificats suivants :
Centre de formation |
Semestre
2023/2024 |
Jours de formation |
Modalité | Crédits | ||
---|---|---|---|---|---|---|
Paris | Semestre 2 | 9 crédits (1) | ||||
Date de début des cours (*) :
* Les dates fournies sont d'ordre général à toutes les formations. |
Tarif (1) : |
---|
Vous pouvez consulter nos tarifs ici. |
Date de début de cours : |
Les dates fournies sont d'ordre général à toutes les formations. Les cours pour cette formation peuvent potentiellement commencer un peu plus tard dans le semestre. |
Annuel : |
Il s'étend de fin septembre / début octobre à début juillet (dates indicatives, renseignez-vous auprès de votre centre). |
Semestre 1 : |
Il s'étend de fin septembre / début octobre à fin janvier / début février (dates indicatives, renseignez-vous auprès de votre centre). |
Semestre 2 : |
Il s'étend de fin février / début mars à début juillet (dates indicatives, renseignez-vous auprès de votre centre). |
Cours du soir : | |
---|---|
Les cours commencent le plus souvent à 18h30 dans les centres. |
|
Cours en journée : | |
Se renseigner auprès du centre pour connaître les horaires. |
|
Cours en ligne : | |
les cours sont diffusés sous forme de séances numériques via une plateforme d’e-learning animées et tutorées par un enseignant. Des séances de regroupement en visio sont proposées. |
|
Classe virtuelle : | |
L'enseignant à distance intervient en direct et en visioconférence sur la plateforme d'e-learning. Il complète son intervention par des activités interactives (exercices échanges…) |
|
Cours en ligne hybride : | |
Cette modalité associe des cours en ligne tutorées et des regroupements en présentiel obligatoires. |
|
Cours hybrides : | |
Cette modalité mixe des cours en présentiel (en cours du soir ou en journée) et des cours en ligne. |
|
Cours en ligne organisés par un autre centre CNAM Régional : |
|
Les cours sont diffusés sous forme de séances numériques via une plateforme d'e-learning animées et tutorées par un enseignant. |